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Discussion of Event Generation and Simulation Needs

Simulation of physics processes Monte Carlo Event Generators

Simulation of detector responses Fast simulations

Analysis of simulated data
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Why AI?

HEPML-LivingReview: A Living Review Monte Carlo Event Generators
of Machine Learning for Particle Physics

https://iml-wg.github.io/HEPML-
LivingReview/

Fast simulations

Generative Networks for LHC events
[2008.08558]
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https://iml-wg.github.io/HEPML-LivingReview/

Why AI?

Monte Carlo Event Generators

A Survey of Machine Learning-Based Physics Event Generation
https://www.ijcai.org/proceedings/2021/0588.pdf

[ MLEGs | Data Source | Detector Effect | Reaction/Experiment [ ML Model
[Hashemi er al., 2019] Pythia8 DELPHES Z — ptp~ regular GAN
+ pile-up effects
[Otten ez al., 2019] MadGraph5 aMC@NLO | DELPHES3 etfe= — Z — ITI~, | VAE
pp — it
[Butter ez al., 2019] MadGraph5 aMC@NLO pp — & — (bq7)(b3¢) | MMD-GAN
[Di Sipio e al., 2019] MadGraph5, Pythia8 DELPHES 2 — 2 parton scattering | GAN+CNN
+ FASTIJET
[Ahdida et al., 2019] Pythia8 + GEANT4 Search for Hidden Parti- | regular GAN
cles (SHiP) experiment
[Alanazi et al., 2020b] | Pythia8 electron-proton scatter- | MMD-
[Velasco et al., 2020] ing WGAN-GP,
cGAN
[Martnez et al., 2020] Pythia8 DELPHES proton collision GAN, cGAN
particle-flow
[Gao et al., 2020] Sherpa pp — W/Z + n jets NF
[Howard et al., 2021] MadGraphS5 + Pythia8 DELPHES Z —ete” SWAE
[Choi and Lim, 2021] MadGraphS5 + Pythia8 DELPHES pp — bbyy WGAN-GP
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Table 1: List of existing MLEGs.




Why Al?

Simulation-based inference methods for particle physics
[2010.06439]

Analysis of simulated data
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ML-based event generators

A Survey of Machine Learning-Based Physics Event Generation
https://www.ijcai.org/proceedings/2021/0588.pdf

| MLEGs Data Source | Detector Effect | Reaction/Experiment | ML Model |
[Hashemi et al., 2019] Pythia8 DELPHES Z — utu~ regular GAN
+ pile-up effects
[Otten et al., 2019] MadGraph5 aMC@NLO | DELPHES3 ete — Z — 1T,
pp — tt
[Butter et al., 2019] MadGraph5 aMC@NLO pp — tt — (bgq')(bg@q’) | MMD-GAN
[Di Sipio et al., 2019] 2 parton scattering | GAN+CNN
[Ahdida et al., 2019] Pythia8 + AutOe N COd ers arch for Hidden Parti- | regular GAN
s (SHiP) experiment
[Alanazi et al., 2020b] | Pythia8 ®ctron-proton scatter- | MMD-
[Velasco et al., 2020] ing WGAN-GP,
cGAN
[Martnez et al., 2020] Pythia8 DELPHES proton collision GAN, cGAN
particle-flow
[Gao et al., 2020] Sherpa pp — W/Z + n jets NF
[Howard et al., 2021] MadGraph5 + Pythia8 DELPHES Z —ete”
[Choi and Lim, 2021] MadGraphS5 + Pythia8 DELPHES pp — bbyy WGAN-GP

Table 1: List of existing MLEGs.
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ML-based event generators

A Survey of Machine Learning-Based Physics Event Generation

https://www.ijcai.org/proceedings/2021/0588.pdf

[ MLEGs

Data Source

| Detector Effect | Reaction/Experiment

[Hashemi et al., 2019]

Pythia8

DELPHES
+ pile-up effects

Z — ptu

[Otten et al., 2019]

[Butter et al., 2019]

[Di Sipio et al., 2019]

Generative

Adversarial

[Ahdida et al., 2019]

Networks

TeT = Z — 1T,
— tt

— tt — (bqq')(bqq')

ML Model

regular GAN

VAE

MMD-GAN

2 parton scattering

GAN+CNN

arch for Hidden Parti-
s (SHiP) experiment

regular GAN
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[Alanazi et al., 2020b] | Pythia8 ®ctron-proton scatter- | MMD-

[Velasco et al., 2020] ing WGAN-GP,
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ML-based event generators

A Survey of Machine Learning-Based Physics Event Generation

https://www.ijcai.org/proceedings/2021/0588.pdf

| MLEGs Data Source | Detector Effect | Reaction/Experiment | ML Model |
[Hashemi et al., 2019] Pythia8 DELPHES Z — utu~ regular GAN
+ pile-up effects
[Otten et al., 2019] MadGraph5 aMC@NLO | DELPHES3 ete- — Z — ITl~, | VAE
pp — tt
[Butter et al., 2019] MadGraph3 aMC@NLO pp — tt — (bqq')(bgq’) | MMD-GAN
[Di Sipio et al., 2019] 2 parton scattering | GAN+CNN
[Ahdida et al, 2019] oreeew Normalizing Flows reyms:drcy remETmngeyy
s (SHiP) experiment
[Alanazi et al., 2020b] | Pythia8 ®ctron-proton scatter- | MMD-
[Velasco et al., 2020] ing WGAN-GP,
cGAN
[Martnez et al., 2020] Pythia8 DELPHES proton collision GAN, cGAN
particle-flow
[Gao et al., 2020] Sherpa pp — W/Z + njets
[Howard et al., 2021] MadGraph5 + Pythia8 DELPHES Z —ete” W2
[Choi and Lim, 2021] MadGraphS5 + Pythia8 DELPHES pp — bbyy WGAN-GP

Table 1: List of existing MLEGs.
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Variational

Autoencoders

\4
b
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Input-image Sampled
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Distribution
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follow a Standard Normal Distribution

Image credit: Aditya Sharma
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Examples in HEP/NP

photon showers in high-granularity
calorimeter.

[2005.05334][2102.12491]
Jet simulation: [2009.04842]

Fast shower simulation in EM barrel
calorimeter: [ATL-SOFT-PUB-2018-
001]

Zero Degree Calorimeters of ALICE
[2006.06704]

On graph structures: reconstruction
of calorimeter data [2104.01725]
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Examples in HEP/NP

photon showers in high-granularity
calorimeter.

[2005.05334][2102.12491]
Jet simulation: [2009.04842]

Fast shower simulation in EM barrel
calorimeter: [ATL-SOFT-PUB-2018-
001]

Zero Degree Calorimeters of ALICE
[2006.06704]

On graph structures: reconstruction
of calorimeter data [2104.01725]



Variational

Autoencoders
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Examples in HEP/NP

* photon showers in high-granularity
calorimeter.
[2005.05334][2102.12491]

* Jet simulation: [2009.04842]

e Fast shower simulation in EM barrel
calorimeter: [ATL-SOFT-PUB-2018-

GeV

S 1 | 001]
L] * Zero Degree Calorimeters of ALICE
[2006.06704]

S EEE e EEE, A * On graph structures: reconstruction
* of calorimeter data [2104.01725]

FIG. 3. Original simulated top quark initiated jet (top) com-
pared to the GVAE-reconstructed jet (bottom) in each of the
three channels. The energy range is log-scaled for better vi-

sualization.
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Generative Adversarial

Networks
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Generative models / density estimation

° GANs:

Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Synthesis [DOI]

g Science with ial Networks: An Appli to 3D Particle Showers
in Multilayer Calorimeters [DOI]

CaloGAN : Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters
with generative adversarial networks [DOI]

Image-based model parameter opti using

Networks [DOI]

How to GAN Event Subtraction [DOI]

Particle Generative Adversarial Networks for full-event simulation at the LHC and their application
to pileup description [DOI]

How to GAN away Detector Effects [DOI]

3D convolutional GAN for fast simulation

Fast simulation of muons produced at the SHIP experiment using Generative Adversarial Networks
[ooin

Lund jet images from generative and cycle-consistent adversarial networks [DOI]

How to GAN LHC Events [DOI]

Machine Learning Templates for QCD Factorization in the Search for Physics Beyond the Standard
Model [DOI]

DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at
the LHC [DOI]

LHC D datasets with i Networks

Generative Models for Fast Calorimeter Simulation.LHCb case [DOI]

Deep generative models for fast shower simulation in ATLAS

Regressive and generative neural networks for scalar field theory [DOI]

Three dimensional Generative Adversarial Networks for fast simulation

Generative models for fast simulation

Unfolding with Generative Adversarial Networks

Fast and Accurate Simulation of Particle Detectors Using Generative Adversarial Networks [DOI]
Generating and refining particle detector si using the distance in i
networks [DOI]

Generative models for fast cluster simulations in the TPC for the ALICE experiment
RICH 2018 [DOI]
GANs for generating EFT models [DOI]

Precise simulation of showers using a
Adversarial Network [DOI]

Reducing Autocorrelation Times in Lattice Simulations with Generative Adversarial Networks [DOI]
Tips and Tricks for Training GANs with Physics Constraints

Controlling Physical Attributes in GAN Simulation of C:
01]
Next Generation Generative Neural Networks for HEP

Calorimetry with Deep Learning: Particle Classification, Energy Regression, and Simulation for
High-Energy Physics

Calorimetry with Deep Learning: Particle Simulation and Reconstruction for Collider Physics [DOI]
Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed
Al-based Monte Carlo event generator for electron-proton scattering

DCTRGAN: Improving the Precision of Generative Models with Reweighting [DOI]

GANplifying Event Samples

Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics
Simulating the Time Projection Chamber responses at the MPD detector using Generative
Adversarial Networks

Explainable machine learning of the underlying physics of high-energy particle collisions

A Data-driven Event Generator for Hadron Colliders using Wasserstein Generative Adversarial
Network [DOI]

Reduced Precision Strategies for Deep Learning: A High Energy Physics Generative Adversarial
Network Use Case [DOI]

Validation of Deep Convolutional Generative Adversarial Networks for High Energy Physics
Calorimeter Simulations

Compressing PDF sets using generative adversarial networks



Generative Adversarial

Event generation
Networks
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Generative Adversaria

Networks
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Generative Adversarial

Simulation
Networks
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Fig. 5 Examples of individual 50 GeV photon showers generated by Geant4 (left), the GAN (center left), WGAN (center
right), and BIB-AE (right) architectures. Colors encode the deposited energy per cell.
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Normalizing Flows

Zg ~ po(Zo) Z; ~ Pi(Zz‘)

Maps complex distributions by transforming a probability
density through a series of invertible mappings.
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Normalizing Flows
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Figure 5. Average shower shapes for et. Columns are calorimeter layers 0 to 2, top row shows
CALOFLOW, center row GEANT4, and bottom row CALOGAN
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Future Directions for EIC simulations?

* Rare opportunity to align Al goals early (like in this workshop)
* Cohesive effort towards community use. Benchmark points.

* Look towards powerful generative models a la natural language models: giant
trained models that can be fine tuned

* Engage with the computer science / data science communities as collaborators.

* Rethink workflow. Can we train models to map p(detector|event gen params)?
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Common Software Effort

Steering Committee

EIC User Group

Software Working Group

ATHENA CORE*

| liaisons

Proto-Collaborations

Simulation Working Groups

* CORE adapts existing software for their needs and has a far smaller software effort than other proto-collaborations.

HEP Community Collaboration with Geant4 and HEP Software Foundation

* EIC as a driver for research in CS and applied math

* scientific, systematic approach to Al / ML approaches to NP
* activation functions, DNN design particular for NP

* building efficient DNNs no more complex than necessary

Data Science Community
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Engaging the data science community in Al simulation efforts

Interesting testing ground for generative models
* Model meaningful, non-standard distributions
* Physics-embedded metrics for evaluating models

Uniquely structured data
* Event generators: continuous variables of variable length
* Detector simulation: highly structured with correlations

* Interfaces between representations
* Uncertainty quantification: stochastic processes, statistical, systematic uncertainties

Data Science Community * EIC as a driver for research in CS and applied math
* scientific, systematic approach to Al / ML approaches to NP
* activation functions, DNN design particular tor NP
* building efficient DNNs no more complex than necessary
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Engaging the data science community in Al simulation efforts

Interesting testing ground for generative models
* Model meaningful, non-standard distributions
* Physics-embedded metrics for evaluating models

Uniquely structured data
* Event generators: continuous variables of variable length
* Detector simulation: highly structured with correlations

* Interfaces between representations
* Uncertainty quantification: stochastic processes, statistical, systematic uncertainties

Data Science Community Engage as collaborators
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Engaging the data science community in Al simulation efforts

Field moving away from hypertuning image and language models
* We have unique data and challenges

Uniquely structured data

* Event generators: continuous variables of variable length

* Detector simulation: highly structured with correlations

* Interfaces between representations

* Uncertainty quantification: stochastic processes, statistical, systematic uncertainties

Data Science Community Engage as collaborators
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mikuchera@davidson.edu

Summary

* Ai has the potential for large impacts on Simulation for
the EIC.

* Large body of prior related work. Often at “bleeding
edge” of Al research. Less commonly used for simulation
in practice. Requires work.

* Simulation R&D is most efficiently done in common
projects and in collaboration with other fields, e.g., HEP
or data science.

Do not expect replacement of core tools, e.g.,
general-purpose MCEGs or Geant4.




